Machine learning based disaggregation of air‐conditioning loads using smart meter data
نویسندگان
چکیده
منابع مشابه
Machine Learning-Based Short-Term Predictionof Air-Conditioning Load through Smart Meter Analytics
The present paper is focused on short-term prediction of air-conditioning (AC) load of residential buildings using the data obtained from a conventional smart meter. The AC load, at each time step, is separated from smart meter’s aggregate consumption through energy disaggregation methodology. The obtained air-conditioning load and the corresponding historical weather data are then employed as ...
متن کاملStreamlining Smart Meter Data Analytics
Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social-economic metrics such as the geographic information of meters, the information about users and their proper...
متن کاملBenchmarking Smart Meter Data Analytics
Smart electricity meters have been replacing conventional meters worldwide, enabling automated collection of fine-grained (every 15 minutes or hourly) consumption data. A variety of smart meter analytics algorithms and applications have been proposed, mainly in the smart grid literature, but the focus thus far has been on what can be done with the data rather than how to do it efficiently. In t...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملIdentification Psychological Disorders Based on Data in Virtual Environments Using Machine Learning
Introduction: Psychological disorders is one of the most problematic and important issue in today's society. Early prognosis of these disorders matters because receiving professional help at the appropriate time could improve the quality of life of these patients. Recently, researches use social media as a form of new tools in identifying psychological disorder. It seems that through the use of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Generation, Transmission & Distribution
سال: 2020
ISSN: 1751-8687,1751-8695
DOI: 10.1049/iet-gtd.2020.0698